Welcome to pjml ‘s documentation!

Install

Requirements

The pjml package requires the following dependencies:

  • numpy
  • scipy
  • pjdata

Install

The pjml is available on the PyPi . You can install it via pip as follow:

pip install -U pjml

It is possible to use the development version installing from GitHub:

pip install -U git@github.com:end-to-end-data-science/pjml.git

If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from Github and install all dependencies:

git clone git@github.com:end-to-end-data-science/pjml.git
cd pjml
pip install .

Test and coverage

If you want to test/test-coverage the code before to install:

$ make install-dev
$ make test-cov

Or:

$ make install-dev
$ pytest --cov=pjml/ tests/

Using pjml

TODO.

For more examples see The pjml example gallery.

API Documentation

This is the full API documentation of the pjml package.

pjml.abs: Abstract Classes and Mixin

Abstract Classes

component.Component(config, enhance, model, …)
container.Container(config, seed, …) A container modifies ‘component(s)’.
container1.Container1(config, seed, …) Configurable container for a single component.
containern.ContainerN(config, seed, components) Container for more than one component.
invisible.Invisible Parent class of all atomic components that don’t increase history of transformations.
macro.Macro
minimalcontainer.MinimalContainer1(*args[, …]) Container with minimum configuration (seed) for a single component.
minimalcontainer.MinimalContainerN(*args[, …]) Container with minimum configuration (seed) for more than one component.
Mixin
defaultenhancerimpl.withDefaultEnhancerImpl
defaultmodelimpl.withDefaultModelImpl
exceptionhandling.WithExceptionHandling Handle component exceptions and enable/disable numpy warnings.
functioninspection.withFunctionInspection
nodatahandling.withNoDataHandling All components that accept NoData should derive this class after deriving Transformer or descendants.
noinfoimpl.withNoInfoImpl
timing.withTiming Management of time.

pjml.data: Abstract Classes and Mixin

Data Communication Tools

cache.Cache(*args[, storage_alias, seed, …])
report.Report(text, **kwargs) Report printer.

Data Evaluation Tools

metric.Metric([functions, target, prediction]) Metric to evaluate a given Data field.
split.Split(split_type, partitions, …) Split a given Data field into training/apply set and testing/use set.

Data Flow Tools

file.File(name, path, description, hashes, …) Source of Data object from CSV, ARFF, file.
unfreeze.Unfreeze(**kwargs) Resurrect a workflow by unfreezing a Data object.

Data Manipulation Tools

pjml.operator: Component Operators

pipeline.Pipeline(*args[, seed, components, …])
chain.Chain(*args[, seed, components, …]) Chain the execution of the given components.
select.Select A permutation is sampled.
shuffle.Shuffle A permutation is sampled.

pjml.stream: Stream Manipulation Tools

Expand

partition.Partition(split_type, partitions, …) Class to perform, e.g.

Reduce

accumulator.Accumulator(iterator, start, …) Cumulative iterator that returns a final/result value.
accumulator.Result(value)
reduce.Reduce(config, **kwargs)
summ.Summ(field, function, **kwargs) Given a field, summarizes a Collection object to a Data object.

Transform

map.Map(*args[, seed, components, enhance, …]) Execute the same component for the entire stream.
multi.Multi(*args[, seed, components, …]) Process each Data object from a stream with its respective component.

pjml.util: Utils

distributions.choice(items)
distributions.uniform([low, high, size])
macro.evaluator(*components[, function])
macro.tsplit(split_type, partitions, …) Make a sequence of Data splitters.

What is new on pjml package?

The pjml releases are available in PyPI and GitHub.

Version 0.X

Todo

About us

Contributors

You can find the contributors of this package here.

Citing pjml

If you use the pjml in scientific publication, we would appreciate citations to the following paper:

TODO

Getting started

Information to install, test, and contribute to the package.

API Documentation

In this section, we document expected types, functions, classes, and parameters available for AutoML building. We also describe our own AutoML systems.

Examples

A set of examples illustrating the use of pjml package. You will learn in this section how pjml works, patter, tips, and more.

What’s new ?

Log of the pjml history.

About us

If you would like to know more about this project, how to cite it, and the contributors, see this section.